We have measured the differential resistance in a two-dimensional topological insulator (2DTI) in a HgTe quantum well, as a function of the applied dc current. The transport near the charge neutrality point is characterized by a pair of counter propagating gapless edge modes. In the presence of an electric field, the energy is transported by counter propagating channels in the opposite direction. We test a hot carrier effect model and demonstrate that the energy transfer complies with the Wiedemann Franz law near the charge neutrality point in the edge transport regime.