Wiener Filtering for Passive Linear Quantum Systems


الملخص بالإنكليزية

This paper considers a version of the Wiener filtering problem for equalization of passive quantum linear quantum systems. We demonstrate that taking into consideration the quantum nature of the signals involved leads to features typically not encountered in classical equalization problems. Most significantly, finding a mean-square optimal quantum equalizing filter amounts to solving a nonconvex constrained optimization problem. We discuss two approaches to solving this problem, both involving a relaxation of the constraint. In both cases, unlike classical equalization, there is a threshold on the variance of the noise below which an improvement of the mean-square error cannot be guaranteed.

تحميل البحث