Bi$boldsymbol{ u}$o phenomenology at the LHC


الملخص بالإنكليزية

We study the LHC constraints on an $R$-symmetric SUSY model, where the neutrino masses are generated through higher dimensional operators involving the pseudo-Dirac bino, named bi$ u$o. We consider a particle spectrum where the squarks are heavier than the lightest neutralino, which is a pure bi$ u$o. The bi$ u$o is produced through squark decays and it subsequently decays to a combination of jets and leptons, with or without missing energy, via its mixing with the Standard Model neutrinos. We recast the most recent LHC searches for jets+missing energy with $sqrt{s}=13~$TeV and $mathcal{L}=36~{rm fb}^{-1}$ of data to determine the constraints on the squark and bi$ u$o masses in this model. We find that squarks as light as 350~GeV are allowed if the bi$ u$o is lighter than 150~GeV and squarks heavier than 950~GeV are allowed for any bi$ u$o mass. We also present forecasts for the LHC with $sqrt{s}=13$~TeV and $mathcal{L}=300~{rm fb}^{-1}$ and show that squarks up to 1150~GeV can be probed.

تحميل البحث