The flipped trinification, a framework for unifying the 3-3-1 and left-right symmetries, has recently been proposed in order to solve profound questions, the weak parity violation and the number of families, besides the implication for neutrino mass generation and dark matter stability. In this work, we argue that this gauge-completion naturally provides flavor-changing neutral currents in both quark and lepton sectors. The quark flavor changing happens at the tree-level due to the nonuniversal couplings of $Z_{L,R}$, while the lepton flavor changing $lrightarrow lgamma$ starts from the one loop level contributed significantly by the new charged currents of $Y_{L,R}$, which couple ordinary to exotic leptons. These effects disappear in the minimal left-right model, but are present in the framework characterizing a flipped trinification symmetry.