Magnonic Weyl states in Cu2OSeO3


الملخص بالإنكليزية

The multiferroic ferrimagnet Cu$_2$OSeO$_3$ with a chiral crystal structure attracted a lot of recent attention due to the emergence of magnetic skyrmion order in this material. Here, the topological properties of its magnon excitations are systematically investigated by linear spin-wave theory and inelastic neutron scattering. When considering Heisenberg exchange interactions only, two degenerate Weyl magnon nodes with topological charges $pm$2 are observed at high-symmetry points. Each Weyl point splits into two as the symmetry of the system is further reduced by including into consideration the nearest-neighbor Dzyaloshinsky-Moriya interaction, crucial for obtaining an accurate fit to the experimental spin-wave spectrum. The predicted topological properties are verified by surface state and Chern number analysis. Additionally, we predict that a measurable thermal Hall conductivity can be associated with the emergence of the Weyl points, the position of which can be tuned by changing the crystal symmetry of the material.

تحميل البحث