A new gas-based proton-recoil telescope for quasi-absolute neutron flux measurements between 0.2 and 2 MeV neutron energy


الملخص بالإنكليزية

Absolute measurements of neutron flux are an essential prerequisite of neutron-induced cross section measurements, neutron beam lines characterization and dosimetric investigations. A new gaseous detector has been developed for measurements of 0.2 to 2 MeV neutron flux based on proton-recoil process. The detector, consisting of two segmented ionization chambers read by Micromegas technology, has beed conceived to provide quasi-absolute neutron flux measurements with an accuracy of simeq3%. The gas pressure flexibility makes the telescope non sensitive to {gamma} and electrons background, and therefore advantageous over semi-conductor materials as a neutron flux instrument. The adjustable gas pressure and H-sample thickness, the use of Micromegas technology and the tracking capabilities allows the detection of neutrons on a large dynamical range and down to 200 keV with a good rejection of scattered neutron events and random background

تحميل البحث