Quantum Monte Carlo Methods in Nuclear Physics: Recent Advances


الملخص بالإنكليزية

In recent years, the combination of precise quantum Monte Carlo (QMC) methods with realistic nuclear interactions and consistent electroweak currents, in particular those constructed within effective field theories (EFTs), has lead to new insights in light and medium-mass nuclei, neutron matter, and electroweak reactions. This compelling new body of work has been made possible both by advances in QMC methods for nuclear physics, which push the bounds of applicability to heavier nuclei and to asymmetric nuclear matter and by the development of local chiral EFT interactions up to next-to-next-to-leading order and minimally nonlocal interactions including $Delta$ degrees of freedom. In this review, we discuss these recent developments and give an overview of the exciting results for nuclei, neutron matter and neutron stars, and electroweak reactions.

تحميل البحث