We have examined the impact of new Daya Bay, Double Chooz, and RENO measurements on global fits of reactor antineutrino flux data to a variety of hypotheses regarding the origin of the reactor antineutrino anomaly. In comparing RENO and Daya Bay measurements of inverse beta decay (IBD) yield versus $^{239}$Pu fission fraction, we find differing levels of precision in measurements of time-integrated yield and yield slope, but similar central values, leading to modestly enhanced isotopic IBD yield measurements in a joint fit of the two datasets. In the absence of sterile neutrino oscillations, global fits to all measurements now provide 3{sigma} preference for incorrect modeling of specific fission isotopes over common mis-modeling of all beta-converted isotopes. If sterile neutrino oscillations are considered, global IBD yield fits provide no substantial preference between oscillation-including and oscillation-excluding hypotheses: hybrid models containing both sterile neutrino oscillations and incorrect $^{235}$U or $^{239}$Pu flux predictions are favored at only 1-2{sigma} with respect to models where $^{235}$U, $^{238}$U, and $^{239}$Pu are assumed to be incorrectly predicted.