Study of energy-momentum tensor correlation function in $N_f=2+1$ full QCD for QGP viscosities


الملخص بالإنكليزية

We study correlation functions of the energy-momentum tensor (EMT) in $(2+1)$-flavor full QCD to evaluate QGP viscosities. We adopt nonperturbatively improved Wilson fermion and Iwasaki gauge action. Our degenerate $u$, $d$ quark mass is rather heavy with $m_{pi}/m_{rho}simeq0.63$, while the $s$ quark mass is set to approximately its physical value. Performing simulations on lattices with $N_t=16$ to 6 at a fine lattice spacing of $a=0.07$ fm, the temperature range of $Tsimeq174$--$464$ MeV is covered using the fixed-scale approach. We attempt to compute viscosities by three steps: (1) calculate two point correlation functions of non-perturbatively renormalized EMT applying the gradient flow method, (2) derive the spectral function from correlation function, and (3) extract viscosities from the spectral function applying the Kubo formula. We report on the status of the project and present preliminary results for the shear viscosity in the high temperature phase.

تحميل البحث