Numerical simulation of compressible flows using two-phase observable Euler equations


الملخص بالإنكليزية

Most fluid flow problems that are vital in engineering applications involve at least one of the following features: turbulence, shocks, and/or material interfaces. While seemingly different phenomena, these flows all share continuous generation of high wavenumber modes, which we term the $k_infty$ irregularity. In this work, an inviscid regularization technique called observable regularization is proposed for the simulation of two-phase compressible flows. The proposed approach regularizes the equations at the level of the partial differential equation and as a result, any numerical method can be used to solve the system of equations. The regularization is accomplished by introducing an observability limit that represents the length scale below which one cannot properly model or continue to resolve flow structures. An observable volume fraction equation is derived for capturing the material interface, which satisfies the pressure equilibrium at the interface. The efficacy of the observable regularization method is demonstrated using several test cases, including a one-dimensional material interface tracking, one-dimensional shock-tube and shock-bubble problems, and two-dimensional simulations of a shock interacting with a cylindrical bubble. The results show favorable agreement, both qualitatively and quantitatively, with available exact solutions or numerical and experimental data from the literature. The computational saving by using the current method is estimated to be about one order of magnitude in two-dimensional computations and significantly higher in three-dimensional computations. Lastly, the effect of the observability limit and best practices to choose its value are discussed.

تحميل البحث