On edge-primitive and 2-arc-transitive graphs


الملخص بالإنكليزية

A graph is edge-primitive if its automorphism group acts primitively on the edge set. In this short paper, we prove that a finite 2-arc-transitive edge-primitive graph has almost simple automorphism group if it is neither a cycle nor a complete bipartite graph. We also present two examples of such graphs, which are 3-arc-transitive and have faithful vertex-stabilizers.

تحميل البحث