We prove well-posedness and regularity results for elliptic boundary value problems on certain domains with a smooth set of singular points. Our class of domains contains the class of domains with isolated oscillating conical singularities, and hence they generalize the classical results of Kondratiev on domains with conical singularities. The proofs are based on conformal changes of metric, on the differential geometry of manifolds with boundary and bounded geometry, and on our earlier results on manifolds with boundary and bounded geometry.