Quantum Experiments and Graphs III: High-Dimensional and Multi-Particle Entanglement


الملخص بالإنكليزية

Quantum entanglement plays an important role in quantum information processes, such as quantum computation and quantum communication. Experiments in laboratories are unquestionably crucial to increase our understanding of quantum systems and inspire new insights into future applications. However, there are no general recipes for the creation of arbitrary quantum states with many particles entangled in high dimensions. Here, we exploit a recent connection between quantum experiments and graph theory and answer this question for a plethora of classes of entangled states. We find experimental setups for Greenberger-Horne-Zeilinger states, W states, general Dicke states, and asymmetrically high-dimensional multipartite entangled states. This result sheds light on the producibility of arbitrary quantum states using photonic technology with probabilistic pair sources and allows us to understand the underlying technological and fundamental properties of entanglement.

تحميل البحث