Vibrational Spectroscopy at Atomic Resolution with Electron Impact Scattering


الملخص بالإنكليزية

Atomic vibrations control all thermally activated processes in materials including diffusion, heat transport, phase transformations, and surface chemistry. Recent developments in monochromated, aberration-corrected scanning transmission electron microscopy (STEM) have enabled nanoscale probing of vibrational modes using a focused electron beam. However, to date, no experimental atomic resolution vibrational spectroscopy has been reported. Here we demonstrate atomic resolution by exploiting localized impact excitations of vibrational modes in materials. We show that the impact signal yields high spatial resolution in both covalent and ionic materials, and atomic resolution is available from both optical and acoustic vibrational modes. We achieve a spatial resolution of better than 2 {AA} which is an order of magnitude improvement compared to previous work. Our approach represents an important technical advance that can be used to provide new insights into the relationship between the thermal, elastic and kinetic properties of materials and atomic structural heterogeneities.

تحميل البحث