Frechet Audio Distance: A Metric for Evaluating Music Enhancement Algorithms


الملخص بالإنكليزية

We propose the Frechet Audio Distance (FAD), a novel, reference-free evaluation metric for music enhancement algorithms. We demonstrate how typical evaluation metrics for speech enhancement and blind source separation can fail to accurately measure the perceived effect of a wide variety of distortions. As an alternative, we propose adapting the Frechet Inception Distance (FID) metric used to evaluate generative image models to the audio domain. FAD is validated using a wide variety of artificial distortions and is compared to the signal based metrics signal to distortion ratio (SDR), cosine distance and magnitude L2 distance. We show that, with a correlation coefficient of 0.52, FAD correlates more closely with human perception than either SDR, cosine distance or magnitude L2 distance, with correlation coefficients of 0.39, -0.15 and -0.01 respectively.

تحميل البحث