We present results for pseudo-critical temperatures of QCD chiral crossovers at zero and non-zero values of baryon ($B$), strangeness ($S$), electric charge ($Q$), and isospin ($I$) chemical potentials $mu_{X=B,Q,S,I}$. The results were obtained using lattice QCD calculations carried out with two degenerate up and down dynamical quarks and a dynamical strange quark, with quark masses corresponding to physical values of pion and kaon masses in the continuum limit. By parameterizing pseudo-critical temperatures as $ T_c(mu_X) = T_c(0) left[ 1 -kappa_2^{X}(mu_{X}/T_c(0))^2 -kappa_4^{X}(mu_{X}/T_c(0))^4 right] $, we determined $kappa_2^X$ and $kappa_4^X$ from Taylor expansions of chiral observables in $mu_X$. We obtained a precise result for $T_c(0)=(156.5pm1.5);mathrm{MeV}$. For analogous thermal conditions at the chemical freeze-out of relativistic heavy-ion collisions, i.e., $mu_{S}(T,mu_{B})$ and $mu_{Q}(T,mu_{B})$ fixed from strangeness-neutrality and isospin-imbalance, we found $kappa_2^B=0.012(4)$ and $kappa_4^B=0.000(4)$. For $mu_{B}lesssim300;mathrm{MeV}$, the chemical freeze-out takes place in the vicinity of the QCD phase boundary, which coincides with the lines of constant energy density of $0.42(6);mathrm{GeV/fm}^3$ and constant entropy density of $3.7(5);mathrm{fm}^{-3}$.