Experimental Saturation of the Heat-Bath Algorithmic Cooling bound


الملخص بالإنكليزية

Heat-Bath Algorithmic cooling (HBAC) techniques provide ways to selectively enhance the polarization of target quantum subsystems. However, the cooling in these techniques are bounded. Here we report the first experimental observation of the HBAC cooling bound. We use HBAC to hyperpolarize nuclear spins in diamond. Using two carbon nuclear spins as the source of polarization (reset) and the 14N nuclear spin as the computation bit, we demonstrate that repeating a single cooling step increases the polarization beyond the initial reset polarization and reaches the cooling limit of HBAC. We benchmark the performance of our experiment over a range of variable reset polarization. With the ability to polarize the reset spins to different initial polarizations, we envisage that the proposed model could serve as a test bed for studies on Quantum Thermodynamics.

تحميل البحث