Relativistic quantum geometry from a 5D geometrical vacuum: gravitational waves from preinflation


الملخص بالإنكليزية

In this work we introduce Relativistic Quantum Geometry (RQG) on a Modern Kaluza-Klein theory by studying the boundary conditions on a extended Einstein-Hilbert action for a 5D vacuum defined on a 5D (background) Riemannian manifold. We introduce a connection which describes a displacement from the background manifold to the extended one, on which the 5D vacuum Einstein equations with cosmological constant included, describes the dynamics of the scalar field $sigma$, which is responsible of describing the mentioned displacement and complies with a relativistic quantum algebra that depends on the relativistic observers. In our formalism the extra dimension is considered as space-like, and therefore is a noncompact one. After considering a static foliation on the extra dimension, we obtain the dynamics for the gravitational waves that propagates on a 4D (curved) background, defined on the 4D induced curved Riemannian manifold. Finally, an example, in which we study a pre-inflationary model of the early universe is developed. We obtain some constraints from Planck2018 observations.

تحميل البحث