APOGEE [C/N] Abundances Across the Galaxy: Migration and Infall from Red Giant Ages


الملخص بالإنكليزية

We present [C/N]-[Fe/H] abundance trends from the SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey, Data Release 14 (DR14), for red giant branch stars across the Milky Way Galaxy (MW, 3 kpc $<$ R $<$ 15 kpc). The carbon-to-nitrogen ratio (often expressed as [C/N]) can indicate the mass of a red giant star, from which an age can be inferred. Using masses and ages derived by Martig et al., we demonstrate that we are able to interpret the DR14 [C/N]-[Fe/H] abundance distributions as trends in age-[Fe/H] space. Our results show that an anti-correlation between age and metallicity, which is predicted by simple chemical evolution models, is not present at any Galactic zone. Stars far from the plane ($|$Z$|$ $>$ 1 kpc) exhibit a radial gradient in [C/N] ($sim$ $-$0.04 dex/kpc). The [C/N] dispersion increases toward the plane ($sigma_{[C/N]}$ = 0.13 at $|$Z$|$ $>$ 1 kpc to $sigma_{[C/N]}$ = 0.18 dex at $|$Z$|$ $<$ 0.5 kpc). We measure a disk metallicity gradient for the youngest stars (age $<$ 2.5 Gyr) of $-$0.060 dex/kpc from 6 kpc to 12 kpc, which is in agreement with the gradient found using young CoRoGEE stars by Anders et al. Older stars exhibit a flatter gradient ($-$0.016 dex/kpc), which is predicted by simulations in which stars migrate from their birth radii. We also find that radial migration is a plausible explanation for the observed upturn of the [C/N]-[Fe/H] abundance trends in the outer Galaxy, where the metal-rich stars are relatively enhanced in [C/N].

تحميل البحث