An inequality connecting entropy distance, Fisher Information and large deviations


الملخص بالإنكليزية

In this paper we introduce a new generalisation of the relative Fisher Information for Markov jump processes on a finite or countable state space, and prove an inequality which connects this object with the relative entropy and a large deviation rate functional. In addition to possessing various favourable properties, we show that this generalised Fisher Information converges to the classical Fisher Information in an appropriate limit. We then use this generalised Fisher Information and the aforementioned inequality to qualitatively study coarse-graining problems for jump processes on discrete spaces.

تحميل البحث