We propose to amplify and compress an ultrashort Light Spring laser seed with a long Gaussian-shaped laser pump through Raman amplification. This Light Spring, which has a helical spatio-temporal intensity profile, can be built on the superposition of three distinct laser frequency components. In order to get an independent frequency amplification, two criteria are established. Besides these criteria, a non equal frequency separation is necessary to avoid resonance overlapping when three or more frequencies are involved. The independent set of equations, which describes the wave-wave interaction in a plasma, is solved numerically for two different Light Spring configurations. In both cases, the amplification and transversal compression of the seed laser pulse have been observed, with a final profile similar to that of the usual Gaussian-shaped seed pulses. In addition, two different kinds of helical plasma waves are excited.