Photoinduced Dynamics of Commensurate Charge Density Wave in 1T-TaS$_{2}$ Based on Three-Orbital Hubbard Model


الملخص بالإنكليزية

We study the coupled charge-lattice dynamics in the commensurate charge density wave (CDW) phase of the layered compound 1T-TaS$_{2}$ driven by an ultrashort laser pulse. For describing its electronic structure, we employ a tight-binding model of previous studies including the effects of lattice distortion associated with the CDW order. We further add on-site Coulomb interactions and reproduce an energy gap at the Fermi level within a mean-field analysis. On the basis of coupled equations of motion for electrons and the lattice distortion, we numerically study their dynamics driven by an ultrashort laser pulse. We find that the CDW order decreases and even disappears during the laser irradiation while the lattice distortion is almost frozen. We also find that the lattice motion sets in on a longer time scale and causes a further decrease in the CDW order even after the laser irradiation.

تحميل البحث