Breaking crystalline symmetry of epitaxial SnTe films by strain


الملخص بالإنكليزية

SnTe belongs to the recently discovered class of topological crystalline insulators. Here we study the formation of line defects which break crystalline symmetry by strain in thin SnTe films. Strained SnTe(111) films are grown by molecular beam epitaxy on lattice- and thermal expansion coefficient-mismatched CdTe. To analyze the structural properties of the SnTe films we applied {em in-situ} reflection high energy electron diffraction, x-ray reflectometry, high resolution x-ray diffraction, reciprocal space mapping, and scanning tunneling microscopy. This comprehensive analytical approach reveals a twinned structure, tensile strain, bilayer surface steps and dislocation line defects forming a highly ordered dislocation network for thick films with local strains up to 31% breaking the translational crystal symmetry.

تحميل البحث