High-throughput plasma separation based on atomic mass holds the promise for offering unique solutions to a variety of high-impact societal applications. Through the mass differential effects they exhibit, crossed-field configurations can in principle be exploited in various ways to separate ions based on atomic mass. Yet, the practicality of these concepts is conditioned upon the ability to drive suitable crossed-field flows for plasma parameters compatible with high-throughput operation. Limited current predictive capabilities have not yet made it possible to confirm this possibility. Yet, past experimental results suggest that end-electrodes biasing may be effective, at least for certain electric field values. A better understanding of cross-field conductivity is needed to confirm these results and confirm the potential of crossed-field configurations for high-throughput separation.