Response of the skyrmion lattice in MnSi to cubic magnetocrystalline anisotropies


الملخص بالإنكليزية

We report high-precision small angle neutron scattering of the orientation of the skyrmion lattice in a spherical sample of MnSi under systematic changes of the magnetic field direction. For all field directions the skyrmion lattice may be accurately described as a triple-$vec{Q}$ state, where the modulus $vert vec{Q} vert$ is constant and the wave vectors enclose rigid angles of $120^{circ}$. Along a great circle across $langle 100rangle$, $langle 110rangle$, and $langle 111rangle$ the normal to the skyrmion-lattice plane varies systematically by $pm3^{circ}$ with respect to the field direction, while the in-plane alignment displays a reorientation by $15^{circ}$ for magnetic field along $langle 100rangle$. Our observations are qualitatively and quantitatively in excellent agreement with an effective potential, that is determined by the symmetries of the tetrahedral point group $T$ and includes contributions up to sixth-order in spin-orbit coupling, providing a full account of the effect of cubic magnetocrystalline anisotropies on the skyrmion lattice in MnSi.

تحميل البحث