Anisotropic structural dynamics of monolayer crystals revealed by femtosecond surface x-ray scattering


الملخص بالإنكليزية

X-ray scattering is one of the primary tools to determine crystallographic configuration with atomic accuracy. However, the measurement of ultrafast structural dynamics in monolayer crystals remains a long-standing challenge due to a significant reduction of diffraction volume and complexity of data analysis, prohibiting the application of ultrafast x-ray scattering to study nonequilibrium structural properties at the two-dimensional limit. Here, we demonstrate femtosecond surface x-ray diffraction in combination with crystallographic model-refinement calculations to quantify the ultrafast structural dynamics of monolayer WSe$_2$ crystals supported on a substrate. We found the absorbed optical photon energy is preferably coupled to the in-plane lattice vibrations within 2 picoseconds while the out-of-plane lattice vibration amplitude remains unchanged during the first 10 picoseconds. The model-assisted fitting suggests an asymmetric intralayer spacing change upon excitation. The observed nonequilibrium anisotropic structural dynamics in two-dimensional materials agrees with first-principles nonadiabatic modeling in both real and momentum space, marking the distinct structural dynamics of monolayer crystals from their bulk counterparts. The demonstrated methods unlock the benefit of surface sensitive x-ray scattering to quantitatively measure ultrafast structural dynamics in atomically thin materials and across interfaces.

تحميل البحث