While there is an increasing amount of literature about Bayesian time series analysis, only a few Bayesian nonparametric approaches to multivariate time series exist. Most methods rely on Whittles Likelihood, involving the second order structure of a stationary time series by means of its spectral density matrix. This is often modeled in terms of the Cholesky decomposition to ensure positive definiteness. However, asymptotic properties such as posterior consistency or posterior contraction rates are not known. A different idea is to model the spectral density matrix by means of random measures. This is in line with existing approaches for the univariate case, where the normalized spectral density is modeled similar to a probability density, e.g. with a Dirichlet process mixture of Beta densities. In this work, we present a related approach for multivariate time series, with matrix-valued mixture weights induced by a Hermitian positive definite Gamma process. The proposed procedure is shown to perform well for both simulated and real data. Posterior consistency and contraction rates are also established.