Room temperature Optical Nanodiamond Hyperpolarizer: physics, design and operation


الملخص بالإنكليزية

Dynamic Nuclear Polarization (DNP) is a powerful suite of techniques that deliver multifold signal enhancements in NMR and MRI. The generated athermal spin states can also be exploited for quantum sensing and as probes for many-body physics. Typical DNP methods require use of cryogens, large magnetic fields, and high power microwaves, which are expensive and unwieldy. Nanodiamond particles, rich in Nitrogen-Vacancy (NV) centers, have attracted attention as alternative DNP agents because they can potentially be optically hyperpolarized at room temperature. Indeed the realization of a miniature optical nanodiamond hyperpolarizer, where 13C nuclei are optically hyperpolarized has been a longstanding goal but has been technically challenging to achieve. Here, unravelling new physics underlying an optical DNP mechanism first introduced in [Ajoy et al., Sci. Adv. 4, eaar5492 (2018)], we report the realization of such a device in an ultracompact footprint and working fully at room temperature. Instrumental requirements are very modest: low polarizing fields, extremely low optical and microwave irradiation powers, and convenient frequency ranges that enable device miniaturization. We obtain best reported optical 13C hyperpolarization in diamond particles exceeding 720 times of the thermal 7T value (0.86% bulk polarization), corresponding to a ten-million-fold gain in NMR averaging time. In addition the hyperpolarization signal can be background-suppressed by over two-orders of magnitude and retained for multiple-minute long periods. Besides compelling applications in quantum sensing, and bright-contrast MRI imaging, this work paves the way for low-cost DNP platforms that relay the 13C polarization to liquids in contact with the high surface-area particles. This will ultimately allow development of miniature quantum-assisted NMR spectrometers for chemical analysis.

تحميل البحث