The interfacial spin modulation of graphene on Fe(111)


الملخص بالإنكليزية

When Fe, which is a typical ferromagnet using d- or f-orbital states, is combined with 2D materials such as graphene, it offers many opportunities for spintronics. The origin of 2D magnetism is from magnetic insulating behaviors, which could result in magnetic excitations and also proximity effects. However, the phenomena were only observed at extremely low temperatures. Fe and graphene interfaces could control spin structures in which they show a unique atomic spin modulation and magnetic coupling through the interface. Another reason for covering graphene on Fe is to prevent oxidation under ambient conditions. We investigated the engineering of spin configurations by growing monolayer graphene on an Fe(111) single crystal surface and observed the presence of sharply branched, 3D tree-like domain structures. Magnetization by a sweeping magnetic field (m-H) revealed that the interface showed canted magnetization in the in-plane (IP) orientation. Moreover, graphene could completely prevent the oxidation of the Fe surface. The results indicate possible control of the spin structures at the atomic scale and the interface phenomena in the 2D structure. The study introduces a new approach for room temperature 2D magnetism.

تحميل البحث