We survey the interactions between foliations and contact structures in dimension three, with an emphasis on sutured manifolds and invariants of sutured contact manifolds. This paper contains two original results: the fact that a closed orientable irreducible 3-manifold M with nonzero second homol-ogy carries a hypertight contact structure and the fact that an orientable, taut, balanced sutured 3-manifold is not a product if and only if it carries a contact structure with nontrivial cylindrical contact homology. The proof of the second statement uses the Handel-Miller theory of end-periodic diffeomorphisms of end-periodic surfaces.