An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe$_2$


الملخص بالإنكليزية

Time reversal and spatial inversion are two key symmetries for conventional Bardeen-Cooper-Schrieffer (BCS) superconductivity. Breaking inversion symmetry can lead to mixed-parity Cooper pairing and unconventional superconducting properties. Two-dimensional (2D) NbSe$_2$ has emerged as a new non-centrosymmetric superconductor with the unique out-of-plane or Ising spin-orbit coupling (SOC). Here, we report the observation of an unusual continuous paramagnetic-limited superconductor-normal metal transition in 2D NbSe$_2$. Using tunneling spectroscopy under high in-plane magnetic fields, we observe a continuous closing of the superconducting gap at the upper critical field at low temperatures, in stark contrast to the abrupt first-order transition observed in BCS thin film superconductors. The paramagnetic-limited continuous transition arises from a large spin susceptibility of the superconducting phase due to the Ising SOC. The result is further supported by self-consistent mean-field calculations based on the ab initio band structure of 2D NbSe$_2$. Our findings establish 2D NbSe$_2$ as a promising platform for exploring novel spin-dependent superconducting phenomena and device concepts, such as equal-spin Andreev reflection and topological superconductivity.

تحميل البحث