Efficient Channel Model for Homogeneous Weakly Coupled Multicore Fiber


الملخص بالإنكليزية

To analyze a homogeneous weakly coupled multicore fiber (WC-MCF) based transmission system via simulation, we propose an efficient (fast and accurate) WC-MCFs channel model, which can describe the propagation effects including attenuation, walk-off, chromatic dispersion, self-phase modulation (SPM), and especially the frequency-dependent inter-core crosstalk (XT). We speed up the simulation with two orders of magnitude by simplifying the XTs calculation. On one hand, the calculation step size can be greatly increased by utilizing a new XTs coupling matrix. On the other hand, the calculation of XT can be further accelerated by down-sampling XTs coupling matrix in frequency domain. The XT power and average occurrence distance should be set manually based on the existing XT model to describe the frequency-dependent XT the same as a real WC-MCF. We numerically and experimentally observed that XTs de-correlation bandwidth decreases with relative time delay (RTD) by fractional linear function. The range of validity of the proposed channel model is also discussed with different walk-off and coupling strength. We believe the proposed efficient channel model can provide great help for analysis and optimization of homogeneous WC-MCF based optical communication systems.

تحميل البحث