The gigantic decrease of resistance by an applied magnetic field, which is often referred to as colossal magnetoresistance (CMR), has been an attracting phenomenon in strongly correlated electron systems. The discovery of CMR in manganese oxide compounds has developed the science of strong coupling among charge, orbital, and spin degrees of freedom. CMR is also attracting scientists from the viewpoint of possible applications to sensors, memories, and so on. However, no application using CMR effect has been achieved so far, partly because the CMR materials which satisfy all of the required conditions for the application, namely, high operating temperature, low operating magnetic field, and sharp resistive change, have not been discovered. Here we report a resistance change of more than two-orders of magnitude at a magnetic field lower than 2 T near 300 K in an A-site ordered NdBaMn_2_O_6_ crystal. When temperature and a magnetic field sweep from insulating (metallic) phase to metallic (insulating) phase, the insulating (metallic) conduction changes to the metallic (insulating) conduction within 1 K and 0.5 T, respectively. The CMR is ascribed to the melting of the charge ordering. The entropy change which is estimated from the B-T phase diagram is smaller than what is expected for the charge and orbital ordering. The suppression of the entropy change is attributable to the loss of the short range ferromagnetic fluctuation of Mn spin moments, which an important key of the high temperature and low magnetic field CMR effect.