In this paper, we study both elliptic and parabolic equations in non-divergence form with singular degenerate coefficients. Weighted and mixed-norm $L_p$-estimates and solvability are established under some suitable partially weighted BMO regularity conditions on the coefficients. When the coefficients are constants, the operators are reduced to extensional operators which arise in the study of fractional heat equations and fractional Laplace equations. Our results are new even in this setting and in the unmixed case. For the proof, we establish both interior and boundary Lipschitz estimates for solutions and for higher order derivatives of solutions to homogeneous equations. We then employ the perturbation method by using the Fefferman-Stein sharp function theorem, the Hardy-Littlewood maximum function theorem, as well as a weighted Hardys inequality.