Tetradic motif profiles of horizontal visibility graphs


الملخص بالإنكليزية

Network motif analysis is a useful tool for the investigation of complex networks. We study the profiles of tetradic motifs in horizontal visibility graphs (HVGs) converted from multifractal binomial measures, fractional Gaussian noises, and heartbeat rates. The profiles of tetradic motifs contains the spatial information (visibility) and temporal information (relative magnitude) among the data points in the corresponding time series. For multifractal binomial measures, the occurrence frequencies of the tetradic motifs are determined, which converge to a constant vector $(2/3,0,8/99,8/33,1/99,0)$. For fractional Gaussian noises, the motif occurrence frequencies are found to depend nonlinearly on the Hurst exponent and the length of time series. These findings suggest the potential ability of tetradic motif profiles in distinguishing different types of time series. Finally, we apply the tetradic motif analysis to heartbeat rates of healthy subjects, congestive heart failure (CHF) subjects, and atrial fibrillation (AF) subjects. Different subjects can be distinguished from the occurrence frequencies of tetradic motifs.

تحميل البحث