Mixed moment of $GL(2)$ and $GL(3)$ $L$-functions


الملخص بالإنكليزية

Let $ mathfrak{f} $ run over the space $ H_{4k} $ of primitive cusp forms of level one and weight $ 4k $, $ k in N $. We prove an explicit formula for the mixed moment of the Hecke $ L $-function $ L(mathfrak{f}, 1/2) $ and the symmetric square $L$-function $ L(sym^2mathfrak{f}, 1/2)$, relating it to the dual mixed moment of the double Dirichlet series and the Riemann zeta function weighted by the ${}_3F_{2}$ hypergeometric function. Analysing the corresponding special functions by the means of the Liouville-Green approximation followed by the saddle point method, we prove that the initial mixed moment is bounded by $log^3k$.

تحميل البحث