Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on $mathbb{R}^N$. III. Transition fronts


الملخص بالإنكليزية

The current work is the third of a series of three papers devoted to the study of asymptotic dynamics in the space-time dependent logistic source chemotaxis system, $$ begin{cases} partial_tu=Delta u-chi ablacdot(u abla v)+u(a(x,t)-b(x,t)u),quad xin R^N,cr 0=Delta v-lambda v+mu u ,quad xin R^N, end{cases} (0.1) $$ where $Nge 1$ is a positive integer, $chi, lambda$ and $mu$ are positive constants, the functions $a(x,t)$ and $b(x,t)$ are positive and bounded. In the first of the series, we studied the phenomena of persistence, and the asymptotic spreading for solutions. In the second of the series, we investigate the existence, uniqueness and stability of strictly positive entire solutions. In the current part of the series, we discuss the existence of transition front solutions of (0.1) connecting $(0,0)$ and $(u^*(t),v^*(t))$ in the case of space homogeneous logistic source. We show that for every $chi>0$ with $chimubig(1+frac{sup_{tin R}a(t)}{inf_{tin R}a(t)}big)<inf_{tin R}b(t)$, there is a positive constant $c^{*}_{chi}$ such that for every $underline{c}>c^{*}_{chi}$ and every unit vector $xi$, (0.1) has a transition front solution of the form $(u(x,t),v(x,t))=(U(xcdotxi-C(t),t),V(xcdotxi-C(t),t))$ satisfying that $C(t)=frac{a(t)+kappa^2}{kappa}$ for some number $kappa>0$, $liminf_{t-stoinfty}frac{C(t)-C(s)}{t-s}=underline{c}$, and$$lim_{xto-infty}sup_{tin R}|U(x,t)-u^*(t)|=0 quad text{and}quad lim_{xtoinfty}sup_{tin R}|frac{U(x,t)}{e^{-kappa x}}-1|=0.$$Furthermore, we prove that there is no transition front solution $(u(x,t),v(x,t))=(U(xcdotxi-C(t),t),V(xcdotxi-C(t),t))$ of (0.1) connecting $(0,0)$ and $(u^*(t),v^*(t))$ with least mean speed less than $2sqrt{underline{a}}$, where $underline{a}=liminf_{t-stoinfty}frac{1}{t-s}int_{s}^{t}a(tau)dtau$.

تحميل البحث