We study the existence, formation and dynamics of gray solitons for an extended quintic nonlinear Schrodinger (NLS) equation. The considered model finds applications to water waves, when the characteristic parameter $kh$ - where $k$ is the wavenumber and $h$ is the undistorted waters depth - takes the critical value $kh=1.363$. It is shown that this model admits approximate dark soliton solutions emerging from an effective Korteweg-de Vries equation and that two types of gray solitons exist: fast and slow, with the latter being almost stationary objects. Analytical results are corroborated by direct numerical simulations.