Joint Estimation of DOA and Frequency with Sub-Nyquist Sampling in a Binary Array Radar System


الملخص بالإنكليزية

Recently, several array radar structures combined with sub-Nyquist techniques and corresponding algorithms have been extensively studied. Carrier frequency and direction-of-arrival (DOA) estimations of multiple narrow-band signals received by array radars at the sub-Nyquist rates are considered in this paper. We propose a new sub-Nyquist array radar architecture (a binary array radar separately connected to a multi-coset structure with M branches) and an efficient joint estimation algorithm which can match frequencies up with corresponding DOAs. We further come up with a delay pattern augmenting method, by which the capability of the number of identifiable signals can increase from M-1 to Q-1 (Q is extended degrees of freedom). We further conclude that the minimum total sampling rate 2MB is sufficient to identify $ {K leq Q-1}$ narrow-band signals of maximum bandwidth $B$ inside. The effectiveness and performance of the estimation algorithm together with the augmenting method have been verified by simulations.

تحميل البحث