Loss and Coupling Tuning via Heterogeneous Integration of MoS2 Layers in Silicon Photonics


الملخص بالإنكليزية

Layered two-dimensional (2D) materials provide a wide range of unique properties as compared to their bulk counterpart, making them ideal for heterogeneous integration for on-chip interconnects. Hence, a detailed understanding of the loss and index change on Si integrated platform is a prerequisite for advances in opto-electronic devices impacting optical communication technology, signal processing, and possibly photonic-based computing. Here, we present an experimental guide to characterize transition metal dichalcogenides (TMDs), once monolithically integrated into the Silicon photonic platform at 1.55 um wavelength. We describe the passive tunable coupling effect of the resonator in terms of loss induced as a function of 2D material layer coverage length and thickness. Further, we demonstrate a TMD-ring based hybrid platform as a refractive index sensor where resonance shift has been mapped out as a function of flakes thickness which correlates well with our simulated data. These experimental findings on passive TMD-Si hybrid platform open up a new dimension by controlling the effective change in loss and index, which may lead to the potential application of 2D material based active on chip photonics.

تحميل البحث