Towards wafer-scale diamond nano- and quantum technologies


الملخص بالإنكليزية

We investigate native nitrogen (NV) and silicon vacancy (SiV) color centers in commercially available, heteroepitaxial, wafer-sized, mm thick, single-crystal diamond. We observe single, native NV centers with a density of roughly 1 NV per $mu m^3$ and moderate coherence time ($T_2 = 5 mu s$) embedded in an ensemble of SiV centers. Low-temperature spectroscopy of the SiV zero phonon line fine structure witnesses high crystalline quality of the diamond especially close to the growth surface, consistent with a reduced dislocation density. Using ion implantation and plasma etching, we verify the possibility to fabricate nanostructures with shallow color centers rendering our diamond material promising for fabrication of nanoscale sensing devices. As this diamond is available in wafer-sizes up to $100 mm$ it offers the opportunity to up-scale diamond-based device fabrication.

تحميل البحث