Ionic liquid gating of InAs nanowire-based field effect transistors


الملخص بالإنكليزية

We report the operation of a field-effect transistor based on a single InAs nanowire gated by an ionic liquid. Liquid gating yields very efficient carrier modulation with a transconductance value thirty time larger than standard back gating with the SiO2 /Si++ substrate. Thanks to this wide modulation we show the controlled evolution from semiconductor to metallic-like behavior in the nanowire. This work provides the first systematic study of ionic-liquid gating in electronic devices based on individual III-V semiconductor nanowires: we argue this architecture opens the way to a wide range of fundamental and applied studies from the phase-transitions to bioelectronics.

تحميل البحث