The number of binaries containing black holes or neutron stars depends critically on the fraction of binaries that survive supernova explosions. We searched for surviving star plus remnant binaries in a sample of 49 supernova remnants (SNR) containing 23 previously identified compact remnants and three high mass X-ray binaries (HMXB), finding no new interacting or non-interacting binaries. The upper limits on any main sequence stellar companion are typically <0.2Msun and are at worst <3Msun. This implies that f<0.1 of core collapse SNRs contain a non-interacting binary, and f=0.083 (0.032<f<0.17) contain an interacting binary at 90% confidence. We also find that the transverse velocities of HMXBs are low, with a median of only 12~km/s for field HMXBs, so surviving binaries will generally be found very close to the explosion center. We compare the results to a standard StarTrack binary population synthesis (BPS) model, finding reasonable agreement with the observations. In particular, the BPS models predict that 5% of SNe should leave a star plus remnant binary.