One of the challenges in strongly correlated electron systems, is to understand the anomalous electronic behavior that develops at an antiferromagnetic quantum critical point (QCP), a phenomenon that has been extensively studied in heavy fermion materials. Current theories have focused on the critical spin fluctuations and associated break-down of the Kondo effect. Here we argue that the abrupt change in Fermi surface volume that accompanies heavy fermion criticality leads to critical charge fluctuations. Using a model one dimensional Kondo lattice in which each moment is connected to a separate conduction bath, we show a Kondo breakdown transition develops between a heavy Fermi liquid and a gapped spin liquid via a QCP with omega/T scaling, which features a critical charge mode directly associated with the break-up of Kondo singlets. We discuss the possible implications of this emergent charge mode for experiment.