Beyond freezing: amorphous water in biomimetic soft nanoconfinement


الملخص بالإنكليزية

Water is a ubiquitous liquid with unique physico-chemical properties, whose nature has shaped our planet and life as we know it. Water in restricted geometries has different properties than in bulk. Confinement can prevent low-temperature crystallization into a hexagonal structure, thus creating a state of amorphous water. In this work we introduce a family of synthetic lipids with designed cyclopropyl modification in the hydrophobic chains that exhibit unique liquid-crystalline behaviour at low temperature, enabling maintenance of amorphous water down to 10 K due to nanoconfinement in a bio-mimetic milieu. Small and Wide Angle X-ray Scattering, Elastic and Inelastic Neutron Scattering, Nuclear Magnetic Resonance Spectroscopy and Differential Scanning Calorimetry, complemented by Molecular Dynamics Simulations, unveil a complex lipid/water phase diagram, in which bicontinuous cubic and lamellar liquid crystalline phases containing sub-zero liquid, glassy, or ice water emerge as a competition between the two components, each pushing towards its thermodynamically favoured state.

تحميل البحث