Metamagnetic texture in a polar antiferromagnet


الملخص بالإنكليزية

The notion of a simple ordered state implies homogeneity. If the order is established by a broken symmetry, elementary Landau theory of phase transitions shows that only one symmetry mode describes this state. Precisely at points of phase coexistence domain states formed of large regions of different phases can be stabilized by long range interactions. In uniaxial antiferromagnets the so-called metamagnetism is an example of such a behavior, when an antiferromagnetic and field-induced spin-polarized paramagnetic/ferromagnetic state co-exist at a jump-like transition in the magnetic phase diagram. Here, combining experiment with theoretical analysis, we show that a different type of mixed state between antiferromagnetism and ferromagnetism can be created in certain acentric materials. In the small-angle neutron scattering experiments we observe a field-driven spin-state in the layered antiferromagnet Ca3Ru2O7, which is modulated on a scale between 8 and 20 nm and has both antiferromagnetic and ferromagnetic parts. We call this state a metamagnetic texture and explain its appearance by the chiral twisting effects of the asymmetric Dzyaloshinskii-Moriya (DM) exchange. The observation can be understood as an extraordinary coexistence, in one thermodynamic state, of spin orders belonging to different symmetries. Experimentally, the complex nature of this metamagnetic state is demonstrated by measurements of anomalies in electronic transport which reflect the spin-polarization in the metamagnetic texture, determination of the magnetic orbital moments, which supports the existence of strong spin-orbit effects, a pre-requisite for the mechanism of twisted magnetic states in this material.

تحميل البحث