3D-printed Terahertz Photonic Bandgap Waveguide-based Fluidic Sensor


الملخص بالإنكليزية

A Bragg waveguide-based resonant fluidic sensor operating in THz band is studied. A fused deposition modeling 3D printing technique is employed to fabricate the sensor where the liquid analyte is flowing in the microfluidic channel integrated into the waveguide cladding. The analyte refractive index-dependent resonant defect state supported by the fluidic channel is probed by tracking the resulting absorption dip and phase change of the core-guided mode on waveguide transmission spectra. The proposed fluidic sensor can open new opportunities in applied chemical and biological sensing as it offers a non-contact measurement technique for monitoring refractive index changes in flowing liquids.

تحميل البحث