Spatial asymptotics and strong comparison principle for some fractional stochastic heat equations


الملخص بالإنكليزية

Consider the following stochastic heat equation, begin{align*} frac{partial u_t(x)}{partial t}=- u(-Delta)^{alpha/2} u_t(x)+sigma(u_t(x))dot{F}(t,,x), quad t>0, ; x in R^d. end{align*} Here $- u(-Delta)^{alpha/2}$ is the fractional Laplacian with $ u>0$ and $alpha in (0,2]$, $sigma: Rrightarrow R$ is a globally Lipschitz function, and $dot{F}(t,,x)$ is a Gaussian noise which is white in time and colored in space. Under some suitable additional conditions, we prove a strong comparison theorem and explore the effect of the initial data on the spatial asymptotic properties of the solution. This constitutes an important extension over a series of recent works.

تحميل البحث