Stark quenching of rovibrational states of H2+ due to motion in a magnetic field


الملخص بالإنكليزية

The motional electric field experienced by an H2+ ion moving in a magnetic field induces an electric dipole, so that one-photon dipole transitions between rovibrational states become allowed. Field induced spontaneous decay rates are calculated for a wide range of states. For an ion stored in a high-field (B ~ 10 T) Penning trap, it is shown that the lifetimes of excited rovibrational states can be shortened by typically 1-3 orders of magnitude by placing the ion in a large cyclotron orbit. This can greatly facilitate recently proposed [E. G. Myers, Phys. Rev. A 98, 010101 (2018)] high-precision spectroscopic measurements on H2+ and its antimatter counterpart for tests of CPT symmetry.

تحميل البحث