Magnetic Vortex Lattices in Finite Isospin Chiral Perturbation Theory


الملخص بالإنكليزية

We study finite isospin chiral perturbation theory ($chi$PT) in a uniform external magnetic field and find the condensation energy of magnetic vortex lattices using the method of successive approximations (originally used by Abrikosov) near the upper critical point beyond which the system is in the normal vacuum phase. The difference between standard Ginzburg-Landau (GL) theory (or equivalently the Abelian Higgs model) and $chi$PT arises due to the presence of additional momentum-dependent (derivative) interactions in $chi$PT and the presence of electromagnetically neutral pions that interact with the charged pions via strong interactions but do not couple directly to the external magnetic field. We find that while the vortex lattice structure is hexagonal similar to vortices in GL theory, the condensation energy (relative to the normal vacuum state in a uniform, external magnetic field) is smaller (larger in magnitude) due to the presence of derivative interactions. Furthermore, we establish that neutral pions do not condense in the vortex lattice near the upper critical field.

تحميل البحث